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SUMMARY 

A new accurate high-order numerical method is presented for the coupled transport of a passive scalar 
(concentration) by advection and diffusion. 

Following the method of characteristics, the pure advection problem is first investigated. Interpolation of 
the concentration and its first derivative at the foot of the characteristic is carried out with a fifth-degree 
polynomial. The latter is constructed by using as information the concentration and its first and second 
derivatives at computational points on current time level t in Eulerian co-ordinates. The first derivative 
involved in the polynomial is transported by advection along the characteristic towards time level t + At in 
the same way as is the concentration itself. Second derivatives are obtained at the new time level t + At by 
solving a system of linear equations defined only by the concentrations and their derivatives at grid nodes, 
with the assumption that the third-order derivatives are continuous. The approximation of the method is of 
sixth order. 

The results are extended to coupled transport by advection and diffusion. Diffusion of the concentration 
takes place in parallel with advection along the characteristic. The applicability and precision of the method 
are demonstrated for the case of a Gaussian initial distribution of concentrations as well as for the case of a 
steep advancing concentration front. The results of the simulations are compared with analytical solutions 
and some existing methods. 
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1. INTRODUCTION 

To solve the equation of advection4iffusion transport accurately is very important in various 
areas such as ground-water flow and suspended sediment and pollutant transport. 

When transport processes of suspended load and pollution in rivers, canals and coastal waters 
are considered, advection is the dominant transport process. It is very easy to introduce 
numerical attenuation, and often in the numerical solution artificial diffusion is added to the 
physical diffusion. In order to reduce numerical difficulties, a number of numerical methods that 
couple finite differences or finite elements (for the diffusive term) with a method of character- 
istics (for the advective term) are in use involving the operator-splitting algorithms (see e.g. 
References 1-4). 
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The solution techniques of the operator-splitting approach encounter criticism because advec- 
tion and diffusion transport, which are two simultaneous physical proce~ses,~ are artificially 
separated and simulated alternately within one discrete time step. Benque et al.' mention that the 
model time step should be limited in order that these two alternate processes converge to the 
physically meaningful result. 

In the above analyses we can see that the fractional step approach has been frequently applied 
because it has special features whereby the difficulties of the numerical solution due to advection 
and diffusion are successively overcome in one small interval time. This feature leads us to select 
some suitable operator in an alternate process. For this reason, a coupling approach to 
advection4iffusion transport, whereby the coupled solution can be obtained within one time 
step, has not become popular because of the absence of a numerical method (operator) appropri- 
ate to the simultaneous solution of the advective and diffusive terms. Almost all of the proposed 
coupling approaches suffer from loss of precision. Stone and Brian' described a coupling 
approximation that deals with the advection and diffusion terms through a six-point implicit 
scheme, but this scheme exhibits numerical damping and dispersion. Holly and Preissmann6 
proposed a numerical method in which both the advection and diffusion are approximated by a 
fourth-order Hermitian polynomial. This scheme may deform the physical wave h concentration^ 
profile) in the diffusion situation because the fourth-order Hermitian polynomial gives inconsist- 
ent numerical second derivatives at grid nodes.' Another coupling approach' combines the 
fourth-order Hermitian polynomial with the centred finite difference at Eulerian grid nodes, but it 
does not avoid numerical dispersion. 

The present paper describes the construction of a higher-order numerical scheme for coupled 
transport by advection and diffusion. The principle of the coupled solution of the problem is that 
the calculation of both advective and diffusive terms is of the same accuracy. The advective term, 
which is a key problem in numerical calculations, has priority of consideration. The paper begins 
with a study of the pure advection problem. A sixth-order polynomial for interpolation of the 
concentration at the foot of a characteristic is constructed between two adjacent computational 
nodes using the concentration and its first and second derivatives. All three are considered as 
dependent variables. The concentration is advected along the characteristic from its foot to time 
level (n + 1)At. Diffusion is computed in parallel with advection along the characteristic, the 
diffusive term being approached explicitly at the foot of the characteristic on the current time level 
with the aid of the second and third derivatives of concentration at the nodes. The latter are 
interpolated by fourth- and third-degree polynomials respectively. At the end of the time step 
level a coupled solution is obtained. The results of calculations of the propagation of an initially 
Gaussian distribution of concentration and of an initially sharp concentration front are given, as 
well as the amplitude and phase portraits of the proposed method. 

2. ID GOVERNING EQUATION OF ADVECTION-DIFFUSION 

Consider the one-dimensional equation governing advection-diffusion: 

ac ac azc 
~ + U- = D, -, 
at ax axz 

where C(x, t )  is the concentration, u(x, t )  is the flow velocity, D, is the constant diffusion 
coefficient in the x-direction, x is the positive direction of flow and t is time. The second term on 
the left-hand side of equation (1) represents advection, whereby the concentration profile is 
transported without damping; the term on the right-hand side represents diffusion. The relative 
intensity of these two terms, which can be represented by the Peclet number Pe,9 determines the 
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character of the equation. If the velocity is high, Pe is large, so that advection is the dominant 
transport factor, equation (1) is nearly hyperbolic and the numerical difficulties are considerable. 
If Pe is small, the equation is nearly parabolic and diffusion transport is dominant. In real life the 
velocity can change with time and so can the features of the equation. 

2.1. Eulerdan pure advection calculation 

2.1.1. Description of the method 

Formal solution and approach 

characteristic curve is 
In the case of pure advection, with the assumption of a constant velocity uo, the equation of a 

dxldt = u 0 .  ( 2 )  

C,=C, or C(x, t+At)=C(x-uoAt, t ) .  (3) 

We can obtain a formal solution along this curve by integrating equation (1): 

Within one time step the particle of fluid moves from point A to point P, the 'new' concentration 
at point P being the same as that at point A. Thus i t  is very important to find the current value of 
the concentration at A (see Figure 1). 

There exist many methods which can be used to find this con~entration. '~- '  Unfortunately, 
all of these methods use a linear interpolation which introduces smoothing, i.e. artificial diffusion. 
It is well known that the linear interpolation used to find the concentration at A is not critically 
satisfactory. Holly and Preissmann6 proposed an interpolation for the concentration by using a 
third-degree Hermitian polynomial. The method was widely accepted by various workers. 1-4, 8 ,  l 4  

Belleudy and Sauvaget14 extended this scheme using implicit time line interpolation. Komatsu 
et a1.15 developed Holly and Preissmann's method by using the information at  six grid nodes to 
construct a higher-order polynomial. Fryxell et al. ' described a method of the Godunov type. 
These methods have not fully avoided the difficulties revealed by Yang,' namely that third-degree 
spline functions exhibit severe numerical attenuation when used for the advection problem. 

Define a grid as shown in Figure 1, 

Axj=xj-xj-', j = 1 , 2 , .  . . , N-1, 

X A A' 
3- 1 xj+l 

Figure 1.  Grid definition 
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and an irregular grid space step ratio 

Ax 
A X ~ + A X ~ + ~ ’  

p.= 1-1. 
1 .!- 1.= (4) 

Let the Courant number be 

Cr = uo At/Axj 

and 

Xj-xA 
Cr = < 1, 

I i - 1  

i.e. the point A is located between pointsj- 1 a n d j  at current time level nAt. The concentrations 
at all grid nodes at this time level are known: 

x . - x  

Cj”-l, C;, C;+l, j = l , 2 , .  . . , N. 

We propose to find the concentration at A using a fifth-degree polynomial in terms of the 
Courant number: 

6 

cA(Cr)= C A i C F i .  (5 )  
i =  1 

If one wishes to use only two adjacent grid nodes so that the method becomes more convenient 
for variable intervals, six coefficients A ,  (i = 1,2, . . . , 6) have to be found subject to the following 
conditions: 

where CX, and CMj are the first and second derivatives respectively of the concentration Cj at 
current time level nAt. After performing the necessary algebra, the expressions for the six 
coefficients A, defined by these known values can be obtained’ and the polynomial ( 5 )  can be 
written as a function of the Courant condition and these known values: 

CA(Cr)= U ,  C;- + U ,  C; + a3 CX;.. + a4CX;+ u5 CM;- + u6CM;, (7) 

where the ai, which are different from the A,, are given by 

a, =6Cr5- 15Cr4+ 10Cr3, a, = 1 - u l ,  

a3 = (3Cr’ - 7Cr4 + 4Cr3)Axj, 

u5 =(Cr5 -2Cr4+ Cr3)Axj2/2, a6=(-Cr5+3Cr4-3Cr3+Cr2)AxjZ/2.  

u4 =(3Cr5 - 8Cr4 + 6Cr3 - Cr)Axj, 

For the pure advection calculation the concentration at time level (n+ 1)At, 

C;+’=C,=CA(Cr), 

can be determined explicitly from equation (7). The calculation cannot be performed, however, if 
the first and second derivatives are not known. Thus it will in turn be necessary to know these 
derivatives at time level (n + 1)At for further computation. 
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Estimation of first derivatives 

The simple advection (for a constant velocity) of the first derivative can be found by 
differentiation of equation ( 1 )  while neglecting the diffusive term. Along the same characteristic 

dx/dt = u0. 

For the concentration the formal solution for the first derivative at the point P can be obtained: 

The interpolation of the first derivative C X ,  at time level nAt should be compatible with that 
applied to the concentration. It can be approximated by differentiating polynomial (5 )  with 
respect to x :  

Substituting the known A i  into the fourth-degree polynomial (9), one obtains 

CX, (Cr )=b ,C; - ,  + b , C j ” + b 3 C X r - ,  + b 4 C X ; + b 5 C M ; _ , + b 6 C M ; ,  (10) 
where 

bl =( -30Cr4+60Cr3-30Cr2)(l/Axj), b2= - b l ,  

b3=(-15Cr4+28Cr3-12Cr2), b 4 = ( -  15Cr4+32Cr3-18Cr2+1), 

b5 =( - 5Cr4 + 8Cr3 - 3Cr2)(Axj/2),  b6=(5Cr4- 12Cr3+9Cr2-Cr)(Axj/2).  

Again all first derivatives at time level (n+ ] )A t  at nodes j =  1,2, . . . , N can be evaluated from 
equation (9), i.e. 

cx;+ l =CX,(Cr).  ( 1 1 )  

Evaluation of second derivatives 

By adding the second derivatives in polynomial (9, the order of accuracy of the numerical 
solution can be increased without increase of the number of nodes. The second derivatives have 
then to be defined at time level (n  + 1)At for further solution. Advection of the second derivative as 
an extension of Holly and Preissmann’s method6 is not adopted here because it produces residual 
terms in the variable velocity field, the discretization of which in turn introduces numerical errors. 

In order to define the second derivatives, the hypothesis of the continuity of the third derivative 
of polynomial ( 5 )  at computational grid nodes is used. Thus the value of the third derivative on 
the left-hand side of the point j ( x A - + x j ) ,  which is given by the polynomial defined over the 
interval ( j -  l , j ) ,  is taken to be equal to the third derivative on the right-hand side of j  ( x , . + x f ) ,  
given by the polynomial defined over the interval ( j ,  j + 1): 

lim ( a3c, ( c r )  )= lim ( d 3 c A ( c r )  ). 
x,+x,: ax3 xA,+xlt ax3 

The third derivative obtained by differentiation of polynomial (5) with respect to x can be written 
at any grid: 
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a i c r  d c r  - 1  
ax -Ax,’ ax’ 

-- - -0 for i = 2 , 3  ~~ 

and that 

lim Cr=O, lim C r = l .  

Substituting the known coefficients A i  into (13), together with hypothesis (12),  a linear equation in 
C M ,  is defined for time step nAt: 

X A  + x, XA +x; 

pjCMY-, -3CMj”+AjCMj”+1=dj” ,  (14) 

where 

For N computational grid nodes one can write N - 2  linear equations (14) for N unknown 
variables C M ,  ( j =  1 , 2 ,  . . . , N ) .  The system (14) should be closed by two boundary conditions. 
For this reason the second derivatives at two boundary points j =  1 ,  N should be known: 

C M , ,  = (“‘c> = C X X , , , .  
ax2 j = l , N  

For a uniform grid A X , = A X , + ~  = A x ,  A, and p,=), so that the system (14), (15) together with the 
boundary condition (16) can be written 

CAI = 

’ - 3  

1 
2 
- 

0 

- 3  

0 

- 1 
2 

1 
2 
- 

8 

- 3  

0 

[ A ] s  = 5, 

1 ’  
2 1 - 

- 3  1 I? 
where d ; , N =  - 3 c x x 1 , N  and the dj” ( j = 2 ,  3 , .  . . , N -  1) are computed by 

c,.- 1 - 2 c y  + C’) - 4  (cxy, 1 - cxy- 1 ( Ax2 A x  
dy= - 10 

2.1.2. Linear error analysis of the method. Following Leendertse,’ two convergence factors 
R ,  and R 2  between the numerical solution of the linear system and the analytical solution are 
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investigated: 

amplitude of numerical solution 
amplitude of analytical solution ’ 

speed of numerical solution 
speed of analytical solution ’ 

R ,  = 

R2 = 

For convergence it is necessary that R 1 + l  and R , + l  when (Ax,At )+O for a determined 
relationship between A x  and At, 

In the numerical scheme presented here, the linear advection differential equation is approxim- 
ated by equations (7) and (10) through two dependent variables C and C X  and by an additional 
algebraic system of equations (14). Following Neumann’s stability analysis,’ the convergence 
factors R ,  and R, can be found by the method of Fourier series. They are functions of the 
Courant number Cr and of the relative wavelength L / A x  ( L  is the wavelength of the single Fourier 
component, Ax is the grid space step). Since the details of the analysis have already been 
documented,’ only final results are given here. 

In Figures 2-4 are shown the two convergence factors R ,  and R ,  (the so-called ‘amplitude 
portrait’ and ‘phase portrait’) and the relative amplitude error (in per cent). The numerical scheme 
is stable for Cr < 1. It gives the exact solution for Cr = 0 or Cr = 1 independently of the ratio L / A x .  
For Cr < 1 the scheme introduces a negligibly small artificial damping. The largest relative 
amplitude error given by the scheme is 0.25% for L / A x > 3  and C r = 0 5  After expansion in 
Taylor series one can demonstrate that the system (7H 10) approximates the advection differential 
equation with sixth-order accuracy provided that the linear system (14) exactly evaluates the 
second derivatives at grid nodes. Thus the amplitude error introduced by the scheme disappears 
quickly as the grid space step Ax decreases. 

2.2. Coupled advection-diflusion problem 

It was demonstrated in the previous subsection that a fifth-degree polynomial results in sixth- 
order-accurate approximation for pure advection. This result can be extended to a coupled 
advection-diffusion problem. Equation (1) can be written as a total derivative along the 
characteristic defined by (2): 

t 
1.005 - 

U A  X 

0.990 - 
0.985 - 

Figure 2. R ,  (amplitude portrait) for pure advection problem 
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1.01 

1.ws 

0.99s 

0.985 

0'9w F 
Figure 3. R ,  (phase portrait) for pure advection problem 

Errcur (5%) 
0.10 

Figure 4. Relative amplitude error for pure advection problem 

where 

~a a 
+u-. _-- 

D t - a t  ax 
The numerical approximation is carried out by replacing the two terms on the left-hand side term 
of equation (1) by (19) and applying discretizations along the characteristic (see Figure 1): 

From equations (19)-(21) one obtains a difference equation for the primary dependent variable C: 

Cj"' = C: + D, AtCXXf , .  (22) 
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With the assumption that the velocity u and the diffusion coefficient D, are constant, the 
approximation of the first derivative C X  is obtained by differentiation of equation ( 1 )  with respect 
to space: 

CX;” = C X i +  D , A t C X X X i .  (23) 

C,, C X , ,  C X X ,  and C X X X ,  in equations (22) and (23) are respectively the values of the 
concentration and the first, second and third derivatives of concentration at the foot of the 
characteristic. With zero diffusion coefficient one can find the solution for pure advection in (22) 
and (23). 

The difficulty of using equations (22) and (23) as a basis for the method lies in obtaining an 
accurate evaluation of C ,  and C X , ,  which are needed for the advection calculation, and of 
C X X ,  and C X X X , ,  necessary for diffusion. It is important to select a polynomial that can give 
accurate solutions for both processes at the same time. Use of a third-degree Hermitian 
polynomial as in the Holly-Preissmann6 method gives acceptable solutions for the advection 
calculation but not necessarily for diffusion. When a third-degree polynomial is used, inter- 
polation of the second derivative is implemented by a linear function and the third derivative is 
constant.’ 

For this reason, equations (22) and (23) are associated with the fifth-degree polynomial 
introduced above. The second derivative at the foot of the characteristic is then expressed as 
third-degree polynomial in terms of the Courant number C r :  

C X X , ( C r ) = c ,  C J - ,  + c ~ C ; - ~  +c ,CXj”_,  +c ,CX;+c ,CM;- ,  +c ,CM;,  (24) 

where 

c1 =(120Cr3 - 1 8 0 0 ’  + 6 0 C r ) ( l / A x f ) ,  c2= - c , ,  

c4 = (60Cr3 - 96Cr2 + 24Cr)Axj,  c3 = (60Cr3 - 84Cr2 + 24Cr)Axj,  

c5 =(10Cr3 - 12Cr2 + 3Cr)Ax;, C6=(- m r 3 +  18Cr2-9Cr+ 1)Ax;. 

In turn, the third derivative of concentration is expressed as a second-degree polynomial 
compatible with (24). Note that the accuracy of the second derivatives given by (24) is limited 
because the values C M ,  are evaluated using the linear system (14). 

2.3. Demonstrative computation 

The numerical method described previously has been tested to demonstrate its merit by 
application to three specific situations: pure advection, advection4iffusion and pure diffusion in 
the uniform channel flow problem with constant velocity and uniform grid A j = p j = + .  All 
computations were carried out by three different methods: analytical, Holly-Preissman6 and that 
proposed here. 

2.3:1. Pure advection problem. This problem of pure advection without diffusion of an initially 
Gaussian concentration (i.e. equation (1) with D, = 0) has an exact solution 
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where X = xo + uo t ,  when the initial and boundary conditions are 

C(x, 0) = exp , 

C(0, t )  = 0. (27) 

Let the physical and grid parameters be D,=O, A t = 5 0  s, Axj=  100 m, Cr=0.5  and 
Pe=u,Axj/D,+co. The numerical results shown in Figure 5 for t = loo00 s (i.e. after 200 time 
steps) were obtained by the system (7), (10) and (14) with the compatible boundary conditions 
(26) and (27) imposed as follows: 

C X ( x ,  0)  = X ( x ,  O)/dx, 

CM(0,  t )  = 0, 

C X ( 0 ,  t )  = 0, 

CM(L,  t )  = 0. 

Two computations were carried out, one with initial standard deviation go = 264 m 
(Figure 5(a)), the other with do= 100 m (Figure 5(b)). The standard deviation not only determines 
the shape of the Gaussian distribution but is also a criterion for testing a numerical method. The 

1 .o 

0.0 

0.6 

0.4 

0.2 

-1200 -800 -400 0 400 800 1200 ('- 4 rn 

-1200 -800 -400 0 400 800 1200 ( ' ~  'Irn 

Figure 5. Results of pure advection problem for t =  loo00 s, A x =  100 m, A t = 5 0  s, C r = 0 3  and Pe= co: (a) u,=264 m; 
(b) u,, = 100 m; A, analytical solution; B, Holly-Preissmann scheme; C, proposed scheme 



COUPLED ADVECTION-DIFFUSION TRANSPORT 53 

smaller its value, the sharper is the distribution and the more difficult are the computations. The 
results of computations with oo= 100 m show the accuracy of the proposed method for sharp 
variations of concentration. The method is not sensitive to the number of time steps, the results 
being very close after 100 and 200 time cycles. We also note that the proposed method does 
not introduce negative concentrations, unlike many numerical schemes in advectiondiffusion 
problems. 

The initial and boundary conditions for the first and second derivatives in equations (7), (10) 
and (14) should be imposed. These values are not available in practical problems. It is thus 
important to test the sensitivity of the method to errors in the initial and boundary estimates of 
the derivatives. 

The second derivatives are computed at the end of each time level by solving the linear system 
(14) defined by the concentration and its first derivative. Consequently, the initial estimate of the 
second derivative does not influence the results, but the initial specification of the first derivative 
affects the evaluation of the second derivative at the next time level. Figure 6 shows the results 
after 200 time steps in a situation similar to Figure 5(a), except that the following initial condition 
for the first derivative, which is not compatible with (26), is imposed: 

CX(x, O)=O. 

The small degree of damping in the figure, in which the phase error is always zero, indicates that 
the method is slightly more sensitive to the initial estimation of the first derivative than is the two- 
point fourth-order method,6 but the peak concentration is good. 

In order to show the influence of the boundary condition estimates of the second derivative 
being inconsistent with the imposed boundary concentration, a small cosine perturbation of the 
boundary estimate is imposed: 

CXX(O,t)=--cos ~ , t>O. 
4=2 T r3 

The numerical results for the system (7)-(10) are presented in Figure 7. The comparison of the 
numerical calculation with the exact solution shows no detectable difference in peak concentra- 
tion for a small boundary perturbation T= 50At or for a larger perturbation T= 10At. The peak 
concentration is not found to be affected after 100 time steps, but oscillations appear at the 

1 .o 

0.8 

0.6 

0.4 

0.2 

-1200 -800 -400 0 400 800 1200 

Figure 6. Results of pure advection problem for t =  loo00 s, Ax = 100 m, At = 50 s, Cr=O.S and C X ( x ,  0) =0: A, analytical 
solution; B, Holly-Preissmann scheme; C, proposed scheme 
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4 concentra 
1 .o 

0 8  

0.6 

0.4 

0.2 

1-24006 -1600 -600 0 800 1600 24000 ‘ 

Figure 7. Results of pure advection problem for t = lo00 s, Ax = 200 m, At = 100 s, Cr=0.48 and Pe= co: A, analytical 
solution; B, proposed scheme using T= 10 At; C ,  proposed scheme using T= 50 At 

beginning of the range. Consequently, if the second derivatives at boundaries are unknown, zero 
values can be imposed as a remedy. 

2.3.2. Advection-difusion problem. Two test problems are presented: the transport of an 

In the first problem the exact Gaussian solution of the advection-diffusion equation (1) for 
initially Gaussian concentration and the transport of a sharp concentration front. 

conditions (26) and (27) is 

where 0 2 = ~ i + 2 D , t .  For the numerical solution a Courant number of 0.5 was selected with 
At = 96 s and A x j  = 200 m, at which stability analysis shows that the largest numerical damping 
will hinder the advection calculation. The transition from strongly dominant diffusion with a 
Peclet number Pe= 10 to strongly dominant advection with Pe =40 is presented. The results for 
t = 9600 s are shown in Figure 8(a), in which the insignificant dissipative and dispersion errors due 
to the advection and diffusion calculations have appeared for no = 264 m. Figure 8(b) shows the 
results obtained by Holly and Preissmann’s interpolation for the same situation. The proposed 
method performs as well as in the pure diffusion problem. It is superior to the standard 
Crank-Nicholson scheme and minimizes amplitude and phase errors (results not shown). 

The second problem is the propagation of a discontinuous concentration front having an exact 
solution for equation (l), 

~ ( x ,  t )  = A  2 [erfc (z) + exp ( y  ) erfc (%)I, 
for initial and boundary conditions 

C(X, O ) = O ,  o < x <  00, 

C(0, t )=1 ,  t > O .  
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1 concentralion 
1 0  

0.8 

06 

0 4  

0 2  

a- P e = -  
b- Pe = 40 
c _ P c = 2 0  
d - P e =  10 

-2000 1600 1200 -800 -400 o 400 800 1200 1600 2000 ( x - ) m 

Figure 8(a). Results of advection4iffusion problem for t = 9600 s, Ax = 200 m, At = 96 s and Cr =048  A, analytical 
solution; B, proposed scheme 

1 conceniraiion 
1 0  

0.8 

0.6 

0 4  

0.2 

a- P c = -  
b - Pe = 4 0  
c - Pe = 20 
d - P e =  10 

-20001 6001 200 -800 -400 0 400 800 1200 1600 2000 ( X - T )  Rl 

Figure 8(b). Results of advection-diffusion problem for t = 9600 s, Ax = 200 m, At = 96 s and Cr =0.48: A, analytical 
solution; B, Holly-Preissmann cubic polynomial 

This problem is inappropriate as a demonstration of the merit of the method when diffusion is 
dominant. Indeed, in such a situation the discontinuous concentration is ‘smoothed’ and the 
inaccuracies of the method are hidden. For this reason, advection-dominated transport is used to 
test the method. 
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0.6- 

0 .4 -  

0.2-  

1 

:ONCENTRATION 

- 
A- 

- 

B 4 
t-I 9205 

- 
i B -  

: -3840s 

A- 

-7680s 

A 

f 
1000 2000 3000 '4000 5000 X (m) 

Figure 9. Results of advection-diffusion problem for Pe = m, Cr =0.96 and Ax = 50 m: A, analytical solution; B, proposed 
scheme 

CONCENTRATION 

0.8 '7- A -  

0.0 I 

l,C A -  

-3840 s 

,C A 

-5760 s 

B,C 

-9600 s 

6000 8000 10000 12000 14030 (m) 

Figure 10. Results of advection-diffusion problem for Pe=70, Cr=0.96 and Ax= 50 m: A, analytical solution; 
B, proposed scheme; C, Holly-Toda three-point diffusion 
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The results for t = 9600 s, in which u,, = 0.5 and 1.5 m s -  ’, Axj = 50 m and At = 96 s are taken for 
pure advection (Pe+ 00) and for diffusion with strongly dominant advection (Pe = 70) respect- 
ively, are shown in Figures 9 and 10. In the case of pure advection (Pe+ co) the analytical solution 
is a step function with the jump introduced over one grid point. It can be seen that no numerical 
oscillations are present at the upstream discontinuous point, and the undershoot phenomenon (or 
numerical ‘dip’) at the downstream discontinuous point certainly does not exist here. 

3. CONCLUSIONS 

For the numerical solution of the advection4iffusion transport problem in which advection is 
dominant, a number of numerical procedures use the method of characteristics coupled with 
interpolation at the foot of the characteristic in order to minimize numerical errors due to 
schematization of the advection term. Lower-order interpolation polynomials cannot lead to 
satisfactory results: linear interpolation is definitely criticizable, and third-degree spline functions 
and Hermitian polynomials can prove unsatisfactory in certain circumstances. This paper 
presents a new method of sixth-order accuracy for one-dimensional transport problems, based on 
an interpolation polynomial of fifth degree. The method is superior to the two-point fourth-order 
scheme in terms of the accuracy of the uncoupled and coupled solutions of advection-diffusion 
problems. 

The fifth-degree polynomial is constructed using the values of the concentration and its first 
and second derivatives at all grid nodes instead ofjust the concentration values as in conventional 
methods. The method requires one more equation to  be solved than in the two-point fourth-order 
method. The second derivatives are found by solving a linear tridiagonal system by means of the 
double-sweep method. Continuity of the third-order derivatives is assumed. The computing time 
is not greatly increased but the accuracy of the method is higher. 

The method is in principle constructed at two computational nodes in order to be easily 
implemented in practical problems. The three points involved in the linear equation for the 
second derivative do not affect the operation of the method, because the linear system is solved at 
the end of each time level independently of the solution for the concentration and its first 
derivative. 

APPENDIX: NOTATIONS 

polynomial coefficients 
concentration interpolation coefficients 
first-derivative interpolation coefficients 
second-derivative interpolation coefficients 
concentration 
concentration first derivative 
concentration second derivative 
concentration third derivative 
grid node concentration 
first derivative of the grid node concentration 
second derivative of the grid node concentration 
interpolating concentration 
unknown concentration 
Courant number 
constant diffusion coefficient in the x-direction 
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number of time step 
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distance step 
time co-ordinate 
time step 
amplitude factor 
phase factor 
initial standard deviation 
standard deviation depending on time 
time period 
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